Mo

. DVT

Eclipse IDE
® For SystemVerilog, Verilog, Verilog-AMS, e, VHDL, PSL, PSS, UPF, and CPF
The complete development environment for hardware design and verification

‘ 10 REASONS TO CHOOSE DVT Eclipse IDE ‘ BENEFITS

{1 Seethe errors flagged by incremental compilation as you
Q type g8 y P y Increases productivity and reduces time to market
Write code faster using autocomplete and error fix
suggestions Speeds up source code development
3 uickly move around in the source code using hyperlinks . . .
a Q y §1yp Enables efficient reading and understanding of
Query the project database to accurately locate relevant complex source code
information
Easily create and reuse code and project templates Simplifies debugging and legacy source code
[@ Continuously improve your source code using maintenance
refactoring operations
Easily understand the project structure using high-level Ensures higher quality source code development
views
&) Visualize the project architecture using UML and HDL Streamlines code review
diagrams
) Trace signals throughout the design Accelerates language and methodology learning
Place reminders and track tasks

\ overview

Design and Verification Tools (DVT) Eclipse IDE is an
integrated development environment for SystemVerilog,
Verilog, Verilog-AMS, the e language, VHDL, PSL, PSS, UPF,
and CPF. It is similar to well-known programming tools
such as Visual Studio®, NetBeans®, and Intelli)®.

DVT IDE consists of a compiler, a smart code editor, an
intuitive graphical user interface, and a comprehensive set
of features that help with code writing, inspection,
navigation, and debugging. It provides capabilities that are
specific to the hardware design and verification domain,
such as design diagrams, signal tracing, power domain
visualization, and verification methodology support.

DVT IDE is a powerful tool that allows your engineers to
overcome the limitations of plain text code editors and
address today's project complexity more efficiently. It
enables faster and smarter code development and
simplifies legacy code maintenance for novices and
experts alike.

IEEE Standard Compliant Compiler

The compiler is compliant with the IEEE 1800™
SystemVerilog, IEEE 1647™ e Language, IEEE 1076™ VHDL,
IEEE 1850™ PSL, and IEEE 1801™ Low Power standards.
Besides fully supporting the design and verification
languages, DVT IDE also flags the use of non-standard
compliant language constructs, which ultimately
increases simulator compatibility.

Integration with Simulators and Other Tools

DVT IDE integrates seamlessly with all major hardware
simulators to simplify simulation analysis. It also works
with revision control systems such as Git, Subversion, and
ClearCase, and bug tracking systems such as Bugzilla and
ClearQuest.

Eclipse Ready

DVT Eclipse IDE is built on the powerful Eclipse Platform
used by millions of engineers worldwide and inherits the
best features and practices collected into the platform.
The Eclipse Platform's extensible architecture allows DVT
Eclipse IDE to integrate within a large plug-in ecosystem
and work flawlessly with third-party extensions.

File Edit Navigate Search Project UVM Run Window Help

§

o~ |#-0-a-|9-|a-| |an |[@ateut -2 -8 -R -2 |v|o-|B-|2|EH|o2] ® o @ [Qov
% Navi | & Code| s Type 2 % Trac \ = O |# ubus_master_driversv 3t 1] Schematic of ip_mac_dram_003 5 =n
.
A 2 // o
Ol i % @B 2= -
=@ e 3 * e &
B [um-1.1d_ubus] uvm_component 28-class ubus_master driver extends uvn driver #(ubus_transfer); a -
= = 2
er by: name 3
Q L]
~ B wm_void ; ; d L e
< B wm_object 2| /1 master 14 Source Code a
< B um_report_object 3i protected int master id; i
35 - s |2 o
< B wm_component &
3% (7 provide implm wethods Sich as get_type. nane a
B um_root 37 “uvm_component_utils_begin(ubus_master driver) B P |
< [uwm_port_component_base 38 “uvm_field_int(waster id, UVM DEFAULT) IS
39 “uvm_component_utils_end
B uvm_port_component#(uvrr| W o

< [um_tim_req_rsp_channel#(ini

< B wm_tim ffo_base#(in) (5| 41 1/ new - constructor o X HDL Diagrams
Class ~ B wm_tm_ffo#(int 2 42 function new (string nane, uvn conponent parent); -
B 43 super.new(name, parent);
HlerarChy :“"’“f"'“f"""'ys‘s—":""“ 44 endfunction : new .
uvm_sequencer_analysis || &5 = .
- 46- function void b phase(uvm_phase phase); (Blarhiiacie o iaga it
s ; nase):

47 super-build phase(phase);
& uvm_tim_transport_channel 8 f(1n contig co(virtual ubus if)::get(this, **, “vif*, vif)) (] UML Class 5 =T
< B wm_in_order_comparators(ini || 49 uvm_fatal (*NOVIF", {"virtual interface must be St for: *,cet | | | — Diagrams e B
B uvm_in_order built_in_comy| || | 50 fon: build phase (=) S
51 :
8 wm_in_order_class_compar| | 2, ,, = N |

[uvm_algorithmic_comparator#| ||~ 53

B . radom, sl | || 3 @ .
B uvm_subscriber#(int) 56 - - = —
i :N L L it et s i e]
C—— D) | . = =) I T L R % ¥ =0|=z 3 S 4 3 * B =
|8 ubus_master. monior 3 £2 | [m] 0 ; | ’]’::’:":":aim:o':::j . - ,l‘) E\ = % ¥ ¢ & % ° =0z covernge mcovemr;g eﬁ I;v;ri:k:’i“ﬂmmlk;]w & =0
Description ompilation Errors v sesouce ath Fiterby: ierarchical name (use 7 - 14
el o LRI — | e
*® coverage_enable [ubus_master_monitor] || 4 warnings (19 items) D —— < [ubus_bus_monitor < 8 ubus_if
' item_collected_port [ubus_master_monitor] | 4 VERILOG_2001: Redefiition of macid name: TX_MAC JABBER WORDS_LIMIT ip_mac_ hostif_rx.v Jemacitl L
% new() [ubus_master_monitor] & VERILOG_2001: Redefinition of macro name: TX_JAM ip_mac_tx_fsm_g.v Jemacyrt] X trans_addrXdir © assertErorUnknown : disab|
% report_phase() [ubus_master_monitor] © VERILOG_2001: Rede f macro name: TX IDLE DATA ip_mac_tx_dpath_g.v Jemacjrtl trans_dir © assertReadOrWrite : disable
% run_phase() [ubus_master_monitor] & VERILOG_2001: Redefinition of ip_mac_hostif_tx.v Jemacrtl L X trans_dirXsize © assertReadUnknown : disat|
! Tasks and |] « trans size © assertResetFor3Clocks : dis
& Tasks % Reminders v =g = trans_start_addr © assertSizeUnknown : disabl
Class Litems < & cov_trans_beat © assertiaitUnknown : disab
Members © .+ Desciption Resouce path Location Type. « beat_addr © assertwiteUnknown : disat
| T0DO wrong reset procedure Ubus_master_¢ /uvm-1.1d_ubus/sv | line 77 Systemverilog Task X beat_addrxdata ~ i ubus_pkg
X beat_addrXdir ~ [ubus_bus_monitor c
() m I D |G m I DIl
B Command mode:)
DVT Eclipse IDE Overview
EFFICIENT CODE WRITING AND All the definitions and places where the method or signal is
used are precisely updated. Users can also "extract this
SIMPLIFIED MAINTENANCE piece of code into a separate function, "add a new port p to
module m," and "propagate signal x from module y to
Advanced Code Editing Features module z across the design hierarchy." Refactoring helps
DVT IDE incorporates advanced code editing features engineers avoid tedious and error-prone operations such as
such as: scrolling through long lists of irrelevant plain text matches

@ On-the-fly syntactic and semantic checking or repetitive copy and paste.

@ Error fix suggestions In-line reminders, such as TODO, FIXME, and customized

® Autocomplete and autoinstance tags can be placed in code comments. These reminders are

® Source code refactoring operations listed in the Tasks View. With a simple click, users can jump
)) gop ; directly to the source code lines of the selected task. In-line

@ In-line reminders and task tracking reminders are also useful when performing code review.

® Customizable code and project templates Since the action items are inside the source code, they are

W Macro expansion always up to date and visible to the whole team. The task list

® Dedicated wizards to generate getters and setters can also be used to estimate the code status and remaining

or override functions development effort.

@ Highly configurable source code formatting Code templates are parameterized code snippets.

@ Integration with revision control systems Combined with TODO tags, this capability enables your

® Viand Emacs emulation users to easily follow the project development guidelines.

Project templates generalize code templates and allow

DVT IDE performs on-the-fly incremental compilation. There ~ €ngineers to start a new project from a reference project
is no need to invoke the simulator to make sure the code layout.

compiles with no errors. Its smart editor highlights the
errors in real time, as you type. As a result, users can make
the necessary corrections on the spot. To assist with error
correction, DVT IDE also provides fix proposals such as "did

Errors inside macros are difficult to investigate. With DVT
IDE's macro expansion feature, engineers can examine and
debug macro code fragments in context with the source

. . code.
you mean" when detecting a potential typo and "update
instance" when module ports changed. Moreover, the Code and Project Navigation Features
developer or reviewer can quickly locate and fix various Maintaining tens of thousands of lines of code can be
issues spread throughout the code using the Problems View challenging. DVT IDE simplifies maintenance by providing
where all errors and warnings are listed. capabilities such as:
Autocomplete provides a context-sensitive list of proposals @ Hyperlinks
for partially entered text. This capability helps avoid typos ® Breadcrumb navigation bar
and eliminates the need to search for definitions in other ® Project database queries
files. Autoinstance allows engineers to quickly instantiate .S . hf . d
and connect a module or entity when needed. emantic search for usage, writers, or readers
@ Structural views
Refactoring allows users to perform semantic changes in ® Signal tracing
code. While a plain text editor or grep/sed utility is limited to @ UML and HDL di
simple search and replace actions, DVT IDE can accurately an lagrams])
perform powerful operations like "rename method foo) of @ Comments and macro or parameter values in tooltips
class bar" and "rename signal x of module y." @ Semantic source code coloring

Platform)=)/Rome/amiq/dVe Work BE8
Ele Edt Nevigate Search Project UVM Bun Window Help
Ies - [5-0-a-|o- |- oa Qe -8 -8 -8 -8 |vi|o-|B-|B|E|e © o - = [Sov]
@ uvm compliance on w110 ubus) ubus_bus monitorsv 53 R =
= 11| 178 endfunction : new NoClg
& || 20140220 19:51 I myy Failed| (% Reapply All| | | 179 &
s s 180 // set slave configs
B 1815 function void set slave configs(string slave name, L
s . 182 int min_addr, int max_addr);
¢ Checks eovEsaespapmapamen | Reapply rules 2| Rl .
3 aftera fix 161 Savesddr naplslave namel..set sddess nap(nin addr, max addr);
i id phase. 185 endfunction : set_slave_configs %
36
Select Predefined Filte, e s ‘ ! s 5
Hidesshon: (@](®) (@] jﬂﬁﬁ[—\ [54 [ubus_example_scoreboard sv build 1 phase() method of ‘ubus_example_scoreboard' does not callsug | 1188 |
O G Ubus_bus_monitorsv. ld_phase() method of‘bus_bus morito-docs not cal super buit 8 FEOQEGS oot Hi o
Browse © uvs2 (1318) O 41 | ubus_slave_driversv build_phase() method of 'ubus_slave_driver' does not call super.build } 191
\ [il|[| 192 /7 run pna:
rules Hies T ® | 111 | ubus_slave_monitorsv. buildphase(method o ubus,slave meritor does ot callswperbul || 192 (7 1un phose L Quickly jump to
B 6 i comracizr @40 |testiibsy build_phase() method of 'ubus_example_base_test" alls superbuild_ | | 104 ork the problematic
@ VM3 (36/36] @[100 |test libsv build_phase() method of 'test_read_modify_write' calls super.build_ph gg Zoﬁ;éf C‘ii?!élum(, source cod e using
o4 il ok Fhase @118 |testiibsy builg ‘st 18_wa_r4_wd'cals superbuild phase ||| 120 hyperlinks
[tmsa riona) @176 |testlibsv build_phase() method of test_2m_4s' calls super.build_phase 196 endtask : run_phase
> ® XVM Connect Phase @52 | ubus_example_tb.sv build ‘ubus_example_tb* 1_phase ;33 T
5 s observe reset
® s @ |66 |ubus_envsv build_phase() method of ‘ubus_env" calls superbuild_phase o
i o] @48 | ubus_master_agentsv build_phase() method of ‘ubus_master_agent: calls superbuild_phase | | 202- fork
@ uvmse [777] @ |47 | ubus_master_driversv build, ‘ubus_master_driver' iper.build_phase 203 forevef begin
@ {100 | ubus_master_monitorsv | build_phase() method of ‘ubus_master_monitor* calls super.build_phas | | 2o @{posedoe vif:sigzreset);
= @ XVM Run Phase ! - n - ! - i Lphas | || 205 status.bus_state = RST_START;
@ tiiss [l @45 | ubus_slave_agentsv | build “ubus_slave_agent' calls superbuild_phase | | | 206 state_port.ritc(status);
207 end
208 forever begin
Generate i s Add waivers for |- RO e
3 us. bu:
report S e exceptions and Inspect passed i Siote portorire (statdy;
[0 o cElences irrelevant failures or failed hits P |
N & 214 endtask : observe_reset
@ 215
v AEeere checks |~ SEaies | PWARER | 216 _// collect transactions

[Problems 53 7 Tasks| # Macros| & Coverage| <~ Checks| Layers| & Console | M Terminal|

@

Dl

a&oa@"“n\

|9 errors, 10 wamings, 0 others.
| Desmpmm

~ | Resource.

path

~ ® Wamings (10 tems)

B [uvM55| “The run_phase() method should contain only fork-join block with task calls inside. This run_phase method contains more statemens. [Right click to show check]
© [PKVR] 'PACKAGE_READMETXT: file doesn't exist in ‘/home/amid/dvt_predefined_projects_target/uvm-1.1d_ubus'. [Right click to show check]

 [PKVD) ‘docs' directory doesn' exstn /home/amiqjdvt_predefined_projects targetuvm-1.1d_ubus'. [Right click t show check]

© [PKLD] Enclosing directory of home/amia/dvt_predefined_projects_targetuvm-1.1d_ubus/sv/ubus_pkg.sv must.
© [ARSI] Sequencer ‘ubus_master_sequencer* s not properly instantiated [Right click to show check]

[Right click to sho

See all failures

& [UVM7] Requested macros not found [Right click to show check]

summarized in

check]

ubus_master_monitorsv.
wm-1.1d_ubus
wm-1.1d_ubus
ubus_pkg.sv
ubus_master_sequencer.sv

ubus_slave_seq_lib.sv

Jvm-11d ubusisv [

Jvm-L1d_ubusisy |3
Javm-1.1d,_ubus/sv

Javm-1.1d_ubus/sv

& [UVMS?] ‘trans_collected'is allocated using new() call instead of create() [Right click to show check]
@ [UVMS?] ‘trans_collected!is allocated using new() call instead of create() [Right click to show check]

Problem View

ubus_bus_mornitor.sv
ubus_master_monitorsv.

Juvm-1.1d,_ubus/sv
Jvm-1.1d_ubus/sv

& [UVMS?] ‘trans_collected s allocated using new() call instead of create() [Right click]

q
| o [UVMS8] build_phase() method of ‘ubus_bus_monitor* does not call super.build_phase [Right click to show check]

UVM Compliance Checking

These features enable users to navigate easily through
complex code, locate the relevant information faster, and
understand the source code quickly. They also reduce
project costs, by allowing users to avoid locking a
simulator license just to inspect the design hierarchy or
the verification environment architecture.

Hyperlinks help navigate faster through multiple project
files. This practically eliminates the need for using the
grep command or memorizing details such as file names
and locations. To look up the definition of an element,
users can simply hover the mouse over the element
name to turn it into a hyperlink. This saves time by
jumping directly to the element definition instead of
having to search for it.

The editor and diagrams show a breadcrumb navigation
bar that clearly indicates the current location in the
design hierarchy. It enables engineers to quickly find their
way and easily move up and down in the design as
needed.

Project database queries allow users to quickly locate
specific elements. For example, typing a few letters in a
search bar locates a specific module, entity, class, macro,
assertion, or coverage item.

Semantic search for usage lets users quickly find out who
is calling "method foo," who is using "signal clk of module
fifo," or "what are all the constraints on packet size.". Itis
also very easy to quickly locate all places where a
variable, signal or parameter is written or read, as well as
where events are emitted.

Unlike plain text grep/sed searches, the semantic search
results are accurate. For example, a search for “who is
calling method foo of class a” will not match calls to
“method foo of some other class b.”

To help in understanding the project architecture, DVT
IDE offers structural views for examining class
hierarchies, function call hierarchies, design and
verification hierarchies, and aspect-oriented
programming (AOP) layers.

Using the signal tracing functionality, designers can
effortlessly locate the signal source, an operation called

Writable Insert

ubus_slave_monitorsv

(G

Juvm-1.1d_ubus/sv

187:46 Command mode: | |

"trace drive," or the signal destination, an operation
called "trace load." The signal trace is presented in the
design hierarchy tree and can also be visualized as a
diagram.

DVT IDE enables your engineers to inspect a project
through diagrams. Designers can use HDL diagrams such
as schematic, state machine, and flow diagrams.
Verification engineers can use UML diagrams such as
inheritance and collaboration diagrams. Bit field
diagrams for packed data structures and UVM registers
are also automatically generated. Diagrams are
hyperlinked and synchronized with the source code and
can be saved for documentation purposes. Users can
easily search and filter diagrams as needed, for example,
visualizing only the clock and reset signals in a schematic
diagram.

Semantic source code coloring simplifies reading. For
example, inactive pre-processing regions are grayed-out,
input ports are visibly distinct from output ports, and
local variables and class variables have different colors.

In the design or verification source code, users can
include waveform specifications using the popular
open-source WaveDrom format which are automatically
rendered as waveforms.

\ PREPROCESSED FILES SUPPORT

DVT IDE provides full IDE capabilities when working with
files that contain “preprocessor” statements in other
languages such as Perl and Python's Jinja2 library, or in
proprietary languages. Even if the actual code for
simulation is generated in subsequent steps from such
files, all the features like navigational hyperlinks,
autocomplete, on-the-fly error detection, quick fixes,
refactoring, etc. work smoothly as if using files written
using only a standard language.

VERIFICATION METHODOLOGY
SUPPORT

DVT IDE supports the Universal Verification Methodology
(UVM). Its powerful UVM oriented features help users
learn UVM faster, accelerate adoption, and build UVM
verification environments with ease.

Users can easily browse through UVM-based classes such
as agents, monitors, and sequences, examine component
and sequence trees, visualize architecture diagrams
including TLM port connections, browse register maps,
search for factory related constructs or config db getters
and setters that may influence the testbench behavior,
and generate code using UVM specific code templates
and wizards.

DVT IDE users can interactively run the Verissimo
SystemVerilog Testbench Linter product, including its
checks for SystemVerilog and UVM compliance. Verissimo
provides hundreds of customizable rules and advanced
capabilities for a thorough audit of testbenches.

DVT IDE also features an OVM to UVM migration wizard,
which provides advanced automated transition
capabilities using refactoring scripts.

LOW POWER SUPPORT

DVT IDE reads UPF or CPF power format files and
presents power domains in diagrams, design hierarchies,
tooltips, and the breadcrumb navigation bars. Any
changes to UPF or CPF files are incrementally analyzed,
and power domains updated on the fly. Such capabilities
simplify power domain design and debugging.

SIMULATOR INTEGRATION

Users can invoke the simulator and browse its output in a
dedicated Console View. This view highlights simulation
errors and warnings and provides hyperlinks that take
the user directly to the source code. To simplify reading,
different colors are assigned to the log, in accordance
with the message source and severity. By providing
simulator log recognition, DVT IDE significantly simplifies
simulation analysis and debugging.

In addition, the external builder integration enables your
engineers to use any code analysis tool directly in DVT
IDE. Errors and warnings are back annotated to the
source code, which speeds up debugging.

CROSS-LANGUAGE CAPABILITIES FOR
MIXED-LANGUAGE PROJECTS

The cross-language capabilities allow users to work with
source code written in multiple languages and easily
understand the whole design. Features such as
hyperlinks, design hierarchy browsing, HDL diagrams, and

INTEGRATED SOLUTION

signal tracing work across SystemVerilog/Verilog,
VHDL and C/C++ sources.

For example, a user can click on an instance in
Verilog and jump to its VHDL definition or click on a
SystemVerilog DPI call and jump to its C definition.

PORTABLE STIMULUS SUPPORT

The Portable Stimulus Standard (PSS) allows the
creation of higher-level verification tests that are
portable from IP to system and from simulation to
hardware. A large number of test scenarios can be
generated from a single PSS description. DVT IDE
provides support for creating and editing PSS code,
solves the behavior expressed in the model, and
displays examples of valid scenarios. Visualization of
detailed scenarios makes it easier for users to
determine whether the abstract PSS model is correct.

INCREASING DESIGN AND
VERIFICATION PRODUCTIVITY
AND QUALITY

Faster and Smarter Code Development

DVT IDE was developed with maximizing the design and
verification productivity in mind. Users do not need to
switch from the editor to the simulator, browser, or
console and therefore they can focus on code writing
and review. Moreover, DVT IDE substantially reduces the
time spent performing repetitive tasks such as locating a
class or module definition, finding all places where a
function is called, renaming a variable, and searching for
relevant information in large source code files or
documentation.

By using hyperlinks, autocomplete, in-line
documentation, semantic search, task-tracking, and
smart log view features users can find what they need
through a single click or shortcut. As a result, the speed
and quality of code development increase significantly.

Efficient Project Management

DVT IDE helps manage your design and verification
projects more efficiently. The ability to easily review the
source code using features such as hyperlinks, project
database queries, structural views, and HDL or UML
diagrams enables both managers and engineers to see
the whole picture clearly and control a project from a
higher perspective. Action item tracking using in-line
reminders listed in the Tasks View allows the team lead
or manager to better organize and control the
development effort.

Lower Language Learning Curve

Beginners feel comfortable with the DVT IDE friendly
user interface. In addition, the combination of features
such as compilation errors highlighted as you type, error
fix proposals, autocomplete, and code templates
together with the access to integrated documentation
speed up the learning process.

1
DVT Eclipse IDE is closely integrated with the other design and verification products available from
AMIQ EDA, including DVT IDE for VS Code, DVT Debugger, Verissimo SystemVerilog Linter, and I

Specador Documentation Generator.

TECHNICAL SUPPORT

The technical support team is available to promptly answer your
questions, provide you with training, and work with you to determine
your needs.

Your requirements and feedback are important. Whether you are
looking for technical support or new features to improve your design
and verification flow, AMIQ’s technical support team strives to answer
your requests in a timely manner.

CONTACT AMIQ

SUPPORT & EVALUATION Copyright 2024 AMIQ EDA S.R.L.
support@amig.com All rights reserved.
SALES The information contained herein is
sales@amig.com subject to change without notice.
WEBSITES DVT-ECLIPSE-0224-A4

www.dvteclipse.com / www.amig.com

