. DVT IDE

for Visual Studio

Mo

Code

® For SystemVerilog, Verilog, Verilog-AMS, and VHDL

The complete development environment

10 REASONS TO CHOOSE
DVT IDE for Visual Studio Code

.

See the errors flagged by incremental compilation as you
type

Write code faster using autocomplete and error fix
suggestions

™)

Quickly move around in the source code using hyperlinks

Query the project database to accurately locate relevant
information

Easily create and reuse code templates

3 Continuously improve your source code using
refactoring operations

Easily understand the project structure using high-level
views

) Visualize the project architecture using UML and HDL
diagrams

) Trace signals throughout the design

Work smoothly with mixed language projects

\ overviEw

Design and Verification Tools (DVT) IDE for Visual Studio
Code (VS Code) is an integrated development
environment (IDE) for SystemVerilog, Verilog, Verilog-AMS,
and VHDL. It is similar to well-known programming tools
such as Eclipse®, NetBeans®, and Intellij®.

DVT IDE consists of a parser, a smart code editor, an
intuitive graphical user interface, and a comprehensive set
of features that help with code writing, inspection,
navigation, and debugging. It provides capabilities that are
specific to the hardware design and verification domain,
such as design diagrams, signal tracing, and verification
methodology support.

DVT IDE is a powerful tool that allows your engineers to
overcome the limitations of plain text code editors and
address today’s project complexity more efficiently. It
enables faster and smarter code development and
simplifies legacy code maintenance for novices and
experts alike.

for hardware design and verification

| BENEFITS

Increases productivity and reduces time to market
Speeds up source code development

Enables efficient reading and understanding of
complex source code

Simplifies debugging and legacy source code
maintenance

Ensures higher quality source code development
Streamlines code review

Accelerates language and methodology learning

IEEE Standard Compliant Parser

The parser is compliant with the IEEE 1800™
SystemVerilog and IEEE 1076™ VHDL standards. Besides
fully supporting the design and verification languages,
DVT IDE also flags the use of non-standard compliant
language constructs, which ultimately increases simulator
compatibility.

Integration with Other Tools

DVT IDE works with revision control systems such as Git,
Subversion, and ClearCase, and bug tracking systems
such as Jira™.

Visual Studio Code Ready

DVT IDE is built on the powerful Visual Studio Code
platform used by millions of engineers worldwide and
inherits the best features and practices collected into the
platform core. The VS Code platform'’s extensible
architecture allows DVT IDE to integrate within a large
extension ecosystem and work flawlessly with third-party
extensions.

o File Edit Selection View Go Run Terminal Help FSM of state - dut (Workspace) - WSCodium - o x

ovT apb_subsystem_top.sv 9+ spi_top.v 6 gpio_litev 5 ®
'
> UVM_REF_FLOW_1.1- COMPILED FILES uvm_ref_Flow_1.1 > designs > socv > tl > rtl_lpw > opencores > spi > rtl >
 COMPILEORDER 259 totzl, 227 uicue, 79 i had

:'SPI Top Timing Diagram',

dma_tx_sm.y 4

spi_top.v > {} spi_top

68 ti
B wart_defineswv [135] 2 0
B spidefinesy [136] 2 ;[; GHAVEDROM END */
[® gpio_defines.svh [137] 72 module spi_top
Rt " wercs L L L L L L AL LF LI e
[uart_ctrl_defines.svh [139] 74 // Wi e '
[B apb_subsystem_defines.svh [140] 75 wb_cl wb_adr_i 7 00 01 02 03 ;
« B ahb_pkgsv[141] 7% whwe
< [g wh_dat_i 77§ pawa1 X772 Data2 ¥77{___Data3
[ahb_defines.sv [143] e -
[ahb_transfersv [144] T o sspa SR
pa 2 .
 DESIGN HIERARCHY A 8)i 2 wo_we_i 777)
81 2
N e B wsni T e T, o
e . TR e WY p, S py N :
i_ahb2apb : ahb2ap! .
84 // Wil
T ¥ | wb_ack 0 i (! —
2
~ % i_apio_lite : gpio_lite 86 input Wb_rSt 1; 77 Synchronous active high reset
2% i_gpio_lite_subnit : gpio_te_subunit . & input [4:0] wb_adr // lower address bits
5 iLoc Uart0= uart. op 88 input [32-1:0] wb_dat // databus input
e " 89 output [32-1:0] wb_dat // databus output
db t_debug_if - -
8 dba: uer_debug | 9 input [3:0] wb_sel // byte select inputs
2 {3 ETRUERGTS o1 input wb_we // write enable input
¥ i_uart_sync_flops: uart_sync_flops * 92 input wb_stb // stobe/core select signal
~ 4§ receiver : uart_receiver 93 input wb_cyc // valid bus cycle input
v 32§ Fifo_rx : uart_rfifo o4 output wb_ack // bus cycle acknowledge output
95 output wb_err // tel nation w/ error
% output wb_int o; // interrupt request signal output
© uart_addr_width = 3200000005 o7
@ uart_data_width = 32'h00000020 Flow of i_oc_uart0 (uart_top) FSM of state X
~ cts_pad_i
~l ded_pad_i
- dsr_pad_i
o w® *®
1 dir_pad_o oc_uarto
linto (uart_top)
 VERIFICATION HIERARCHY apb,_subsystem_test R B
regs
(uart_regs)
18 monitor:ahb maser monitr J (_McMD_RD) (__MCMD_WR)

& sequencer : ahb_master_sequencer

 driver: ahb_master_driver
~ % apbo: apb_env

’—E
3 wb_interface
(uart_ub)
] LI -

R

dbg
(uart_debug_if)

&5 bus monitor:apb monitor
— 3—Lﬂ
@ sea_item_port: uvm_seq_item_pull_port

@ sea_item_prod_if: uvm_seq_item_pull_port
@ rsp_port : uvm_analysis_port

> DIAGNOSTICS
@3A1K =on

DVT IDE for Visual Studio Code in action (1)

EFFICIENT CODE WRITING AND
SIMPLIFIED MAINTENANCE

Advanced Code Editing Features

DVT IDE incorporates advanced code editing features
such as:

On-the-fly syntactic and semantic checking
Error fix suggestions

Autocomplete and autoinstance

Source code refactoring operations
Customizable code templates

Macro expansion

Dedicated wizards to generate getters and setters
or override functions

Highly configurable source code formatting

Integration with revision control systems

Emacs and vi emulation

DVT IDE performs on-the-fly incremental compilation.
There is no need to invoke the simulator to make sure
the code compiles with no errors. Its smart editor
highlights the errors in real time, as you type. As a result,
users can make the necessary corrections on the spot. To
assist with error correction, DVT IDE also provides fix
proposals such as “did you mean” when detecting a
potential typo and “update instance” when module ports
have changed. Moreover, the developer or reviewer can
quickly locate and fix various issues spread throughout
the code using the Problems View where all errors and
warnings are listed.

@ uvm_ref flow 1.1 > default @ (2

Autocomplete provides a context-sensitive list of
proposals for partially entered text. This capability helps
avoid typos and eliminates the need to search for
definitions in other files. Autoinstance allows engineers to
quickly instantiate and connect a module or entity when
needed.

Refactoring allows users to perform semantic changes in
code. While a plain text editor or grep/sed utility is limited
to simple search and replace actions, DVT IDE can
accurately perform powerful operations like “rename
method foo() of class bar” and “rename signal x of
module y.” All the definitions and places where the
method or signal is used are precisely updated. Users can
also “extract this piece of code into a separate function”
and “add a new port p to module m.” Refactoring helps
engineers avoid tedious and error-prone operations such
as scrolling through long lists of irrelevant plain text
matches or repetitive copy and paste.

Code templates are parameterized code snippets.
Combined with TODO tags, this capability enables your
users to easily follow the project development guidelines.

Errors inside macros are difficult to investigate. With DVT
IDE's macro expansion feature, engineers can examine
and debug macro code fragments in context with the
source code.

v File Edit Selection View Go Run Terminal Help

oVt Spi_top.y 6 uart_ctrl_reg_model.sv & ahb_envisv o+

> UVM_REF_FLOW_1.1- COMPILED FILES uvm_ref_flow_1.1 > soc_verification_ib > sv_cb_ex_lib > uart_ctrl > sv >

UML of uart_monitor - vt (Workspace) - VSCodium

uart_monitorsv 9+

dma_tx_sm.y 4

uart_ctrl_req_model.sv > %3 uart_ctrl_reg_model_c > & build()

~ COMPILE ORDER (299 total, 227 unique, 79 skip] 269
270 class ua_ier_c extends uvn_reg; .
- 271 class uart_ctrl_pkg:ua_ier_c
272 rand N . N) . . .
2 273 rand
e [e | om | o | :
[# ahb_defines.sv[143] * s rand
[ahb_transfer.sv [144] - 276 RW RW RW RW .
[ahb_master_monitorsv[145] ¢ 277 virt Feld size Position Access Volatile ResetValue HasReset Randomized Individually Accesible
[#) ahb_master_sequencer.sv[146] 278 X rx_data 1 o RW o 0 1 1 1
B ahb master driversv 1471 ® 279 ™ data 1 1 RW 0 0 1 1 1 .
280 ™ o
 DESIGN HIERARCHY 25b subsystem top RAEE g tx Mlinests 1 2 RW 0 0 1 1 1
282 rx mdmsts 1 3 RW o 4 1 1 1 .
™ e——— s 28 rx_line sts.configure(this, 1, ", 0, 'UVM_REG_DATA_WIDTH'hoo>>2, 1, 1, 1);
41 W EISCTES 284 mdm_sts = uvm_reg_field::type_ic ate("mdn_sts"); .
3t i_gpio_ite_subnit : gpio_lite_subunit 2 g5 mdm_sts.configure(this, 1, 3 , 8, "UVM_REG_DATA_WIDTH'hee>>3, 1, 1, 1); o
! i_oc_uart0 : uart_top . 286 wr_cg.set_inst_name($sformatf (*%s.wcov", get full name()));
L dbg: vart_debug_if
- UML of uart_monitor x @ o - UVM Components of ahbo
~ ¥ regs: uart_regs
30 i_uart_sync_flops : uart_sync_flops © o
% receiver: uart_receiver E3 ()
® ®

@ uart_addr_width = 32'h00000005
© uart_data_width = 32'00000020 uvn_analysis_port <T> | [uart_config |
ol cts_pad.i i H

~ ded_pad_i
ol dsr_pad i

frane_collected_port |

/ VERIFICATION HIERARCHY 29 subsystem test &, Ba [

B apb_subsystem_test

H
~ @ ve:apb_subsystem_tb

uart_rx_nonitor vart_tx_monitor

& virtual_sequencer : apb_subsystem_virtual_sequenc
2
) ahbo: ahb_env

~ & master_agent: ahb_master_agent
& monitor : ahb_master_monitor
& seauencer : ahb_master_sequencer

DEBUGCONSOLE TERMINAL PROBLEMS (iKE:

~ PROBLEMS
& driver: ahb_master_driver

~ & apb0:apb_env
&5 bus_monitor : apb_monitor

~ = uart_tx_monitorsv soc_verification_ib/sv_cb_ex_lib/interface_uve_lib/uart/sv (@

/A OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of met...

(. ST T ST /A OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of met...

/A OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of met...
/\ OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of me.
/\ OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of me.
/\ OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of me.
/\ OVERRIDE_VIRTUAL_METHOD: Qualifier ‘public’ of me.
/A WIDTH_MISMATCH_PADDING: Assignment to 'base_ad...
/\ WIDTH_MISMATCH_PADDING: Assignment to 'base_ad...

No ports.

> DIAGNOSTICS

DVT IDE for Visual Studio Code in action (2)

Code and Project Navigation Features
Maintaining tens of thousands of lines of code can be
challenging. DVT IDE simplifies maintenance by providing
capabilities such as:
W Hyperlinks
Breadcrumb navigation bar
Project database queries
Semantic search for usage
Structural views
Signal tracing
UML and HDL diagrams
Comments and macro or parameter values in tooltips
Semantic source code coloring

These features enable users to navigate easily through
complex code, locate the relevant information faster, and
understand the source code quickly. They also reduce
project costs, by allowing users to avoid locking a
simulator license just to inspect the design hierarchy or
the verification environment architecture.

Hyperlinks help navigate faster through multiple project
files. This practically eliminates the need for using the
grep command or memorizing details such as file names
and locations. To look up the definition of an element,
users can simply hover the mouse over the element
name to turn it into a hyperlink. This saves time by
jumping directly to the element definition instead of
having to search for it.

The editor and diagrams show a breadcrumb navigation
bar that clearly indicates the current location in the
design hierarchy. It enables engineers to quickly find their
way and easily move up and down in the design as
needed.

Project database queries allow users to quickly locate
specific elements. For example, typing a few lettersin a
search bar locates a specific module, entity, class, macro,
assertion, or coverage item.

cur_frane |

DVT(Verilog Semantic Warning) [73, 32]

¥ v = uart_ctrl pkgsv soc verification lib/sv_cb_ex libjuart._ctrl/sv @
G el sy /A SYSTEM_VERILOG_2012: Expecting "endif label 'UART_CRTL... DVT(Verilog Syntax Warning) [51, 1]
~ & master :apb_master_agent g ¥ ° vartctrlreg modelsv soc veriiation lib/sv_cb_ex_lbjuart ctrjsv @

r_agent
(s nastir-agent)
uart_frane ()

)
=

e

driver.
(ahb_naster_driver)

sequencer
(ahb_naster_sequencer)

o]

e

~ X

Y @

~ output [dvt] Build E
(CUNNECLED L0 SUD-LN5LaNCe OULPUL POTL) aL LLNE: 493 Ll 1LLE: /NOIE/ SErUal/WOTKspaces/
dvt-projects/uvm_ref flow 1.1/designs/socv/rtl/rtl lpw/apb_subsystem/rtl/apb_subsystem 0.v
¥+ SEMANTIC WARNING: SIGNAL NEVER READ: Signal 'restore edge mem' is never read (connected
to sub-instance output port) at line: 335 in file: /home/serban/workspaces/dvt-projects/
uvm_ref _flow 1.1/designs/socv/rtl/rtl lpw/apb_subsystem/rtl/power ctrl veneer.v
¥+ SEMANTIC WARNING: SIGNAL NEVER READ: Signal 'restore edge smc' is never read (connected
to sub-instance output port) at line: 367 in file: /home/serban/workspaces/dvt-projects/
uvm_ref _flow 1.1/designs/socv/rtl/rtl lpw/apb_subsystem/rtl/apb_subsystem 0.v
¥+ SEMANTIC WARNING: SIGNAL NEVER READ: Signal 'restore edge urt' is never read (connected
to sub-instance output port) at line: 369 in file: /home/serban/workspaces/dvt-projects/
uvm_ref _flow 1.1/designs/socv/rtl/rtl lpw/apb_subsystem/rtl/apb_subsystem 0.v
¥+ SEMANTIC WARNING: SIGNAL NEVER READ: Signal 'rstn non srpg alut' is never read
(connected to sub-instance output port) at line: 321 in file: /home/serban/workspaces/
dvt-projects/uvm_ref flow 1.1/designs/socv/rtl/rtl lpw/apb_subsystem/rtl/power ctrl veneer.v
¥+ SEMANTIC WARNING: SIGNAL NEVER READ: Signal 'rstn non srpg cpu' is never read

2 =E)

@ uvm_ref flow 1.1 > default @ (2

Semantic search for usage lets users quickly find out who
is calling “method foo,” who is using “signal clk of module
fifo,” or “what are all the constraints on packet size.”

Unlike plain text grep/sed searches, the semantic search
results are accurate. For example, a search for “who is
calling method foo of class a” will not match calls to
“method foo of some other class b.”

To help in understanding the project architecture, DVT
IDE offers structural views for examining function call,
design, and verification hierarchies.

Using the signal tracing functionality, designers can
effortlessly locate the signal source, an operation called
“show writers,” or the signal destination, an operation
called “show readers.” The signal trace can also be
visualized as a diagram.

DVT IDE enables your engineers to inspect a project
through diagrams. Designers can use HDL diagrams such
as schematic, state machine, and flow diagrams.
Verification engineers can use UML diagrams such as
inheritance and collaboration diagrams. Diagrams are
hyperlinked and synchronized with the source code and
can be saved for documentation purposes. Users can
easily search and filter diagrams as needed, for example,
visualizing only the clock and reset signals in a schematic
diagram.

Semantic source code coloring simplifies reading. For
example, inactive pre-processing regions are grayed-out,
input ports are visibly distinct from output ports, and
local variables and class variables have different colors.

In the design or verification source code, users can
include waveform and register specifications using the
popular open-source WaveDrom format. They can
render and view waveforms, generate WaveDrom
templates, and view their registers graphically.

VERIFICATION METHODOLOGY
SUPPORT

DVT IDE supports the Universal Verification Methodology
(UVM). Its powerful UVM-oriented features help users
learn UVM faster, accelerate adoption, and build UVYM
verification environments with ease.

Users can easily browse through UVM-based classes
such as agents, monitors, and sequences, examine
component trees, visualize architecture diagrams, and
generate code using UVM specific code templates and
wizards.

DVT IDE users can interactively run the Verissimo
SystemVerilog Linter product, including its checks

for SystemVerilog and UVM compliance. Verissimo
SystemVerilog Linter provides hundreds of customizable
rules and advanced capabilities for a thorough audit of
testbenches.

SIMULATOR INTEGRATION

Users can start the simulation or synthesis directly from
DVT IDE and browse its output in the built-in terminal.
Customizable problem matchers grep the standard
output in order to detect error or warning messages and
connect them with the source code. All errors and
warnings are presented in the Problems View, allowing
users to quickly jump to the source of the error or
warning. By providing simulator log recognition, DVT IDE
significantly simplifies and speeds up the simulation
analysis and debugging.

CROSS-LANGUAGE CAPABILITIES FOR
MIXED-LANGUAGE PROJECTS

The cross-language capabilities allow users to work with
source code written in multiple languages and easily
understand the whole design.

Features such as hyperlinks, design hierarchy browsing,
HDL diagrams, and signal tracing work across
SystemVerilog/Verilog and VHDL. For example, a user can
click on an instance in Verilog and jump to its VHDL
definition.

INTEGRATED SOLUTION

DVT IDE for VS Code is closely integrated with the other design and verification products available
from AMIQ EDA, including DVT Eclipse IDE, DVT Debugger, Verissimo SystemVerilog Linter,

and Specador Documentation Generator.

TECHNICAL SUPPORT

INCREASING DESIGN AND
VERIFICATION PRODUCTIVITY
AND QUALITY

Faster and Smarter Code Development

DVT IDE was developed with maximizing the design
and verification productivity in mind. Users do not
need to switch from the editor to the simulator,
browser, or console and therefore they can focus on
code writing and review. Moreover, DVT IDE
substantially reduces the time spent performing
repetitive tasks such as locating a class or module
definition, finding all places where a function is called,
renaming a variable, and searching for relevant
information in large source code files or
documentation.

By using hyperlinks, autocomplete, in-line
documentation, and semantic search features users
can find what they need through a single click or
shortcut. As a result, the speed and quality of code
development increase significantly.

Efficient Project Management

DVT IDE helps manage your design and verification
projects more efficiently. The ability to easily review
the source code using features such as hyperlinks,
project database queries, structural views, and HDL or
UML diagrams enables both managers and engineers
to see the whole picture clearly and control a project
from a higher perspective.

Lower Language Learning Curve

Beginners feel comfortable with the DVT IDE friendly
user interface. In addition, the combination of
features such as compilation errors highlighted as you
type, error fix proposals, autocomplete, and code
templates together with the access to integrated
documentation speed up the learning process.

AMiQ
CONTACT AMIQ

SUPPORT & EVALUATION
support@amiqg.com

Copyright 2023 AMIQ EDA S.R.L.
All rights reserved.

The technical support team is available to promptly answer your

questions, provide you with training, and work with you to determine

your needs.

The information contained herein is
subject to change without notice.

SALES
Your requirements and feedback are important. Whether you are sales@amiqg.com
looking for technical support or new features to improve your design
and verification flow, AMIQ’s technical support team strives to answer

your requests in a timely manner.

WEBSITES
www.dvteclipse.com / www.amig.com

DVT-VSCODE-0723-A4

