
VERISSIMO
SystemVerilog Linter

Thorough audit of your designs and testbenches

BENEFITS

Improves design and testbench code quality and
reliability

Prevents incorrect functionality and performance
issues

Automates coding guidelines checking, including UVM
compliance

Simplifies code maintenance

Identifies dead code and copy-and-paste code

Accelerates language and methodology learning

Ensures best coding practices are followed

SystemVerilog provides powerful constructs and a high
level of programming flexibility, at the same time
introducing new challenges in code development.

For example, the ability to implement the same
functionality in multiple ways may impact the simulation
performance or lead to unexpected behavior.

A SystemVerilog compiler checks whether the source code
follows the Language Reference Manual (LRM) rules and as
such, it flags only language-specific syntactic and semantic
errors. However, the absence of compilation errors does
not give any indication of code reliability and
maintainability. Nor does it imply that best coding
practices have been implemented and compliance with
recommended methodologies has been met.

Verissimo SystemVerilog Linter is a coding guideline and
verification methodology compliance checker that enables
engineers to perform a thorough audit of their designs and
testbenches. With this tool, users can check for language
pitfalls, semantic and style issues, and compliance with the
appropriate methodologies. Verissimo can be customized
to check specific group or corporate coding guidelines to
ensure consistency and best practices in code developing.
For many types of check violations, Verissimo offers
intelligent autocorrect suggestions to make it quick and
easy for users to resolve issues.

OVERVIEW

Suspicious language usage such as non-standard
syntax, problematic delta cycle usage, and
prohibited system calls

Semantic issues that are not caught by the
SystemVerilog compiler, for example, an
overridden non-virtual method, which will likely
result in unexpected behavior

Improper styling such as confusing declaration
order and naming conventions

Verification methodology violations such as
inappropriate object creation, missing calls, and
constructs that should be avoided

Unused code elements such as variables that are
never read or written, or functions that are never
called

Performance issues like not passing arrays by
reference and thereby creating useless copies

Copy-and-paste code duplication

SystemVerilog and Universal Verification
Methodology (UVM) compliance

TYPES OF CHECKS

Verissimo performs a thorough static analysis of the
source code. It checks the following areas:

Ve
ris

si
m

o
H

TM
L

Re
po

rt

Customizing the Checks
Users can select from the hundreds of built-in checks in
the Verissimo library and enable only those that
correspond to their specific requirements. Users can
customize existing rules by tuning their parameters or
create new rules by using a dedicated Java application
programming interface (API) that provides access to the
linter’s internal database.

Auto-Correcting
Verissimo can automatically correct violations found
for certain classes of coding rules and users can control
which rule violations are auto-corrected. This capability
speeds up development and reduces code
maintenance costs.

Comparing with Baseline
Users can run Verissimo and generate a baseline
report, run again after adding new code or fixing
errors, and ignore any violations common to the two
runs. Intelligent filters enable viewing new violations,
confirming violation fixes, and assessing the effects of
any changes to the coding rules. This minimizes “noise”
and increases productivity, especially when working
with legacy code.

Integrating with DVT IDE
Verissimo runs in batch mode, as a standalone tool, or
in GUI mode in Eclipse or Visual Studio Code. In GUI
mode, users can perform linting and then visualize the
results in the DVT Integrated Development
Environment (IDE), which offers an effective way to
read and understand errors and warning messages.
Users can quickly jump to the problematic source line
to fix the issue flagged by Verissimo. Then, all they have
to do is reapply one or more rules in order to validate
the fix.

Generating Reports
Verissimo features a report generator that can be used
to save the results of a linting session as a text or HTML
file. The HTML report includes a dashboard that shows
an overview of the linting status, including information

such as pass/fail percentage, top failed checks, and
effort estimation for fixing failures. The report also
comes with advanced functionality for searching and
filtering failures. For example, author or file filtering can
be used to focus the failure analysis on a specific code
section.

Customizing Reports
Verissimo provides an API to generate custom reports.
Users can dump the linting results in CSV or JSON
formats to match a specific continuous integration (CI)
engine requirement or they can prepare a small
summary report that is automatically emailed to the
entire team.

Merging Reports
Users can merge reports from multiple Verissimo runs,
for example to combine the results from multiple
configurations of an IP block, or to combine IP block
results into a system-on-chip (SoC) overview. Users can
also generate HTML progress reports that show how
check results change over time. These are useful to
gauge verification status and support continuous
integration with code checking at every stage.

SUMMARY
Verissimo signals improper SystemVerilog language,
semantics, and styling usage, as well as
methodology violations. It helps improve design and
verification code reliability, functionality, and
maintainability. Verissimo can be customized to meet
the demands of small teams while scaling up to larger
verification groups and global enterprises. Ultimately,
Verissimo is a tool that allows companies to implement
the best coding practices in verification.

The seamless integration between Verissimo, as a code
analysis tool, and DVT IDE, as a code development tool,
further improves verification productivity and quality. It
also contributes to decreasing the significant costs
associated with code maintenance.

Verissimo SystemVerilog Linter is closely integrated with the other design and
verification products available from AMIQ EDA, including DVT Eclipse IDE, DVT IDE for VS Code,
DVT Debugger, and Specador Documentation Generator.

INTEGRATED SOLUTION

The technical support team is available to promptly answer your
questions, provide you with training, and work with you to determine
your needs.

Your requirements and feedback are important. Whether you are
looking for technical support or new features to improve your design
and verification flow, AMIQ’s technical support team strives to answer
your requests in a timely manner.

TECHNICAL SUPPORT CONTACT AMIQ

SUPPORT & EVALUATION
support@amiq.com

SALES
sales@amiq.com

WEBSITES
www.dvteclipse.com / www.amiq.com

Copyright 2023 AMIQ EDA S.R.L.
All rights reserved.

The information contained herein is
subject to change without notice.

VER-0723-A4

