
 1

My First VHDL Project

DVT Eclipse IDE

2/14

● Switch to the DVT Perspective from

menu Window > Open Perspective > Other... > DVT

● The DVT Perspective presents different
Views (GUI components) around the Editor Views

Types
Compile Order
Design Hierarchy
Trace Connections
 ...

3/14

● You typically create a project in a folder that contains the source code files

● DVT creates .project and .dvt in the project location folder

It is not mandatory to create a project where the source files are
All “outside the project” sources will be presented under DVT Auto-Linked

The .project file indicates to Eclipse that a project exists in the folder
The .dvt folder contains various DVT specific project settings

my_ip/
vhdl/

core/
examples/

my_ip/
.project
.dvt
vhdl/

core/
examples/

4/14

● Invoke the wizard

From menu File > New > DVT Project

● Specify the project location

● Specify the project nature. If a project was already
configured, that is if .project and .dvt already exist, the
wizard recognizes the existing project

You can open one of the Predefined Projects,
if you want to see how an example project is configured

5/14

● In order to provide advanced functionality (like hyperlinks, autocomplete, design and class hierarchy,
error signaling, etc.) DVT analyzes the source code files in your project. This analysis process is called
build

● By default DVT scans the project folder and automatically
detects how to compile the source code files. This is specified
by the +dvt_init_auto directive used by default in the build file

● In order to build, DVT uses the compilation arguments that you specify in a build file. The default build file
is .dvt/default.build

6/14

● You can change the .dvt/default.build

● In a .build file you can specify:

● For more options see: https://www.dvteclipse.com/documentation/vhdl/Build_Configurations.html

● In order to reuse existing argument files that you pass to a simulator, DVT supports several compatibility
modes like vcs, ius or questa

Absolute paths or project root relative paths
System variables like ${var} or %var%
-work lib1 to set a specific library for certain files -- NOTE: only one -work per +dvt_init section is allowed
-f <path> or -F <path> to include a file containing more arguments

7/14

● Building a project means compiling and indexing all the source files in order to provide hyperlinks,
autocomplete, design browsing …

● After changing .dvt/*.build, you have to Rebuild the
project from the toolbar button

Full Build or Rebuild = compile all using directives from the current build file
Incremental Build = compile changes. As you edit files, DVT incrementally builds the project.

8/14

● The Compile Order View shows all the compiled files

You can open the Compile Order View from menu Window > Show View > Compile Order
It is typically located on the right side of the Editor, behind the Outline View

● The Problems View shows all the errors and warnings in your project

Build Errors: file not found ...
Syntax Errors: unexpected token “sgnal” instead of “signal” ...
Semantic Errors: duplicate entities, type not found ...

You can open the Problems View from menu Window > Show View > Problems
It is typically located below the Editor

9/14

● Hyperlinks: in the editor press Ctrl and hover entity names, procedure names, and in general any
identifier. A hyperlink appears. Click the it to go to the definition. In addition to the hyperlink, a drop-
down presents more options, for example Show Usages

● Show Usages: in the editor press Ctrl and hover an identifier. From the drop-down chose Show Usages
to see all places were a variable, signal, procedure, entity etc. is used

● Autocomplete: in the editor Ctrl + Space triggers autocomplete. For example usb<Ctrl+Space here> will
show all signals starting with usb

● Quick Fixes: in the editor on a line with errors Ctrl +1 pops-up quick fix proposals to correct typos, to
declare missing variables etc.

● Rename Refactoring: place the cursor over an identifier and right click > Refactor > Rename or
Shift+Alt+R to rename and update all usages across the entire project

10/14

● Design Hierarchy: place the cursor over the entity name and press Shift + F4 to see the design structure
● Diagrams: Right click on an entity / variable to get schematics / state machine diagrams
● Trace Connections: Right click on a signal and Trace > Trace Driver / Load

● All Entities/Packages/Types/...: menu Window > Show View > Types
● All TODOs/FIXMEs: menu Window > Show View > Tasks

● Code Templates: menu Window > Show View > Code Templates

● To quickly find an entity or type: Ctrl + Shift + T
● To quickly open a file: Ctrl + I or Ctrl + Shift + R

11/14

And many more, please contact support@amiq.com for a demo.

mailto:support@amiq.com

12/14

● Sometimes your source code is spread on the disk, not everything is under one “source code root” folder

● Files outside the Project Location folder (“external files”) are by default automatically brought during a
full build under the DVT Auto-Linked virtual folder

● What you see there are the actual files, any change will be visible on the disk and the other way around

● The hierarchy under DVT Auto-Linked may be too deep. To bring the files “closer” you can:
● Use +dvt_auto+link_root+alias=/path/to/folder directives in default.build
● Use Linked Resources. Linked Resources are logical entities, no additional files are created on your

disk. Their definition is stored in the .project file

13/14

Right click on Project > New > DVT Linked Resource, specify the target location and linked resource name

Rebuild the project in order to avoid duplicate files in the newly created folder and DVT Auto-Linked

14/14

Mail to support@amiq.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

